My first post I need some advise ....
1. Is there a guide somewhere on learning how to intepret UOA Reports that u guys and girls are showing ? I have little clues on what each chemical is doing or if extra what will happen....
2. Came across this website ...
http://www.sportrider.com/tech/146_0310_oil/
One common claim is that motorcycle oils have specific additives that are more suited for motorcycle engines. Based on an average of the three automotive oils we tested, the bike oils do in fact contain more of everything except calcium and boron. Note that the average moly content, which is often the friction modifier of choice, is higher in the motorcycle oils than the car oils mainly due to the three bike oils that use an extremely high moly content.
Another common claim is that the higher price of motorcycle-specific synthetic oils allows oil manufacturers to use not only better and more heat-resistant base stocks (as shown in the heat aging data), but also more additives. Our averaged data shows that in general, the synthetic oils contain as much or more of each additive. Note, however, that we only tested two motorcycle-specific petroleum oils, and results could vary with more oils tested.
There is a comparison Castrol Syntec automobile and Motul 300V which ends up abt the same.
Looking at overall averages, the bike oils have an average of 1986 ppm of calcium versus the car oils' 2702 ppm. While the bike oils average 296 ppm of magnesium, the car oils muster only 54 ppm. Since many of the bike oils do not use any boron, their average is only 96 ppm compared to the car oils' 116 ppm. However, looking only at bike oils that use boron as part of their additive package, the average is 253 ppm. The bike and car oils are clearly different in this category.
For one, most name-brand motorcycle-specific oils are indeed different than common automotive oils, even within the same brand, debunking a common myth. Mobil One automotive oil is definitely different than its motorcycle-specific version. The same is true for the three oils provided by Castrol, showing that both companies have different goals when formulating their automotive and motorcycle products. Whether they perform better-despite the data we've gathered-is still a matter of opinion. Another manufacturer, on the other hand, appears to have selected the same additives in both of its offerings, which begs the question: Are they actually identical and simply relabeled?
Looks like the requirements for bikes oil is higher than cars. But are they compatible or even better ?
1. Is there a guide somewhere on learning how to intepret UOA Reports that u guys and girls are showing ? I have little clues on what each chemical is doing or if extra what will happen....
2. Came across this website ...
http://www.sportrider.com/tech/146_0310_oil/
One common claim is that motorcycle oils have specific additives that are more suited for motorcycle engines. Based on an average of the three automotive oils we tested, the bike oils do in fact contain more of everything except calcium and boron. Note that the average moly content, which is often the friction modifier of choice, is higher in the motorcycle oils than the car oils mainly due to the three bike oils that use an extremely high moly content.
Another common claim is that the higher price of motorcycle-specific synthetic oils allows oil manufacturers to use not only better and more heat-resistant base stocks (as shown in the heat aging data), but also more additives. Our averaged data shows that in general, the synthetic oils contain as much or more of each additive. Note, however, that we only tested two motorcycle-specific petroleum oils, and results could vary with more oils tested.
There is a comparison Castrol Syntec automobile and Motul 300V which ends up abt the same.
Looking at overall averages, the bike oils have an average of 1986 ppm of calcium versus the car oils' 2702 ppm. While the bike oils average 296 ppm of magnesium, the car oils muster only 54 ppm. Since many of the bike oils do not use any boron, their average is only 96 ppm compared to the car oils' 116 ppm. However, looking only at bike oils that use boron as part of their additive package, the average is 253 ppm. The bike and car oils are clearly different in this category.
For one, most name-brand motorcycle-specific oils are indeed different than common automotive oils, even within the same brand, debunking a common myth. Mobil One automotive oil is definitely different than its motorcycle-specific version. The same is true for the three oils provided by Castrol, showing that both companies have different goals when formulating their automotive and motorcycle products. Whether they perform better-despite the data we've gathered-is still a matter of opinion. Another manufacturer, on the other hand, appears to have selected the same additives in both of its offerings, which begs the question: Are they actually identical and simply relabeled?
Looks like the requirements for bikes oil is higher than cars. But are they compatible or even better ?